
1

C
A

R
T

H
A

 I
I 

20
20

 /
 0

4

Galo Canizares
Beyond the Cruelty of Software

 Barely a month into online teaching I noticed a 
new type of debate occurring during university faculty 
meetings. Suddenly, it seemed there were numerous 
ongoing arguments over which software would be best 
suited for distance learning. Should we use Zoom, 
Microsoft Teams, Google Meet, or the odd sounding 
BlueJeans? What’s better, Slack or Blackboard? How does 
the Family Educational Rights and Privacy Act (FERPA) 
and security factor into our software preferences? 
It wasn’t a simple argument over specific computer 
applications; individuals had to convince other faculty 
that their preferred tool was the best, the most powerful, 
the most productive, or the most efficient. Absent from 
these judgements on software, however, was any mention 
of compassion, community, pleasure, or delight. No one 
associated software with anything meant to spark joy. 
There was only productivity and efficiency.

While quarantine brought to the surface many broad 
systemic injustices and inequalities, it also revealed some 
smaller oppressive technological structures that had 
remained up until then largely invisible. Not only did 
online teaching call attention to a massive gap in internet 
access and digital surveillance systems reveal their 
nefarious role in policing, the software we engage with 
on a daily basis began to appear increasingly cruel in an 

already cruel world. Zoom’s lack of security led directly 
to countless hateful zoombombings; Twitter’s image 
algorithm was proven to actively suppress non-white 
skin tones; and despite initially pausing their Creative 
Cloud subscription fees, Adobe continued to hold their 
users hostage and dependent on their proprietary tools. 
Perhaps most unnoticed of all was the emergence of 
spyware-esque remote proctoring software, a somewhat 
organic by-product of institutionalized examination 
protocols sold to universities and testing companies to 
monitor at-home exams. Far from the dark web’s version 
of villainy, these episodes constitute a kind of quotidian 
cruelty, an almost boring malevolence that most of us 
ignore as we attempt to remain productive. Our ability 
to look past these phenomena or perhaps dismiss 
them as simple glitches or errors is a testament to the 
normalization of software’s cruelty. As Ruha Benjamin 
reminds us in Race After Technology, a software glitch is 
a “slippery place...between fleeting and durable, micro-
interactions and macro-structures, individual hate and 
institutional indifference.”1 In other words, glitches and 
errors in systems reveal at best ignorance or indifference 
and at worst hatefulness and racism. Think back to 
the resignation one feels when a program crashes and 
the only option is to click OK. Or the helplessness one 
encounters when a much needed file is incompatible 

1 Ruha Benjamin, Race Af-
ter Technology: Abolitionist 
Tools for the New Jim Code 
(Medford, MA: Polity Press, 
2019).



2

with their current application version. Such episodes 
not only make for sympathetic anecdotes (including 
cathartic internet memes), but also illustrate how user-
friendliness does not necessarily mean compassion.

A big problem with user-friendliness is its reliance on 
extracting value. Contrary to popular belief, software 
is not made for users, it is made for the value users can 
generate. Whatever kindness we might perceive in these 
tools is purely transactional. A computer application 
need only be friendly if it helps users achieve an external 
monetizable goal, not necessarily an internal one. 
As a result, software’s imagined users must resort to 
customization in order to cope with the endless process 
of being monetized either through time or labor. Workers 
are allowed colorful backgrounds if it means they can 
stay attentive during Zoom meetings; individuals may 
turn on dark mode to withstand staring at their screens 
for longer periods of time. These ostensibly user-friendly 
features feed directly into Big Tech’s play-as-you-work 
ideology, which, under the guise of compassion, often 
acts as a trojan horse to extract as much value from 
individuals as feasibly possible while they play.

More coping mechanism than invited attitude, play in 
software is a means of dealing with the fact that software 
is not made for us. Or so the writer and video game critic 
Ian Bogost claims in his book, Play Anything. After 
describing it as “a way of operating a constrained system 
in a gratifying way,” Bogost goes on to note that play is 
essentially turning “misery into fun,” a way to cope with 
the banality of the world.2 In design, for instance, users 
typically play freely or use software tools incorrectly to 
achieve novelty. Play, particularly in form-making and 
representation, at times leads to innovation. But Bogost’s 
kind of play relies entirely on individual resistance 
or creative freedom that is not always afforded to all. 
Moreover, to find joy and amusement in the mundane 
world largely not built for all of us is more of an 

anesthetic than a radical way of being. Instead of relying 
on individuals to train themselves into seeing the world 
as a playground, a more profound position would be to 
make the world more intentionally playful. To make it a 
place where we don’t have to gamify mundane situations 
but are instead invited to play by its systems inverts 
the logic of late capitalism. Is there room beyond the 
live-work and play-as-you-work models of economic 
extraction that pervade contemporary life for more 
purposely playful exchanges? Without compassion and 
care from a system’s designers, play is simply a tactic for 
enduring that system’s indifference to us.

After reading Curtis Roth’s call for new modes of self-care, 
I thought about the potential for emotionally comforting 
and compassionate software. Although current business 
models for software companies do not offer room for 
tools that can heal without turning a profit, current calls 
for caring infrastructures have gained momentum as a 
result of the global pandemic. In the summer of 2020, for 
example, the School for Poetic Computation in New York 
asked students in their course, Digital Love Languages, 
“What if all the software we used was made by people 
who love us?”3 This provocation suggested a potential 
fusion between programming and compassion beyond 
“user-friendliness” that may engender new models for 
software design. Around the same time, architects in the 
U.K. expressed their dissatisfaction with the prominent 
industry-standard software, Autodesk Revit.4 In a letter 
that gained notoriety in architectural press outlets, a 
number of leading international firms painted Revit as 
highly constraining and a tool with which users must 
constantly wrestle. If professional software is subject to 
the whims of a profession, then architecture’s current 
frustration with its relationship to software also hints at 
a collective desire for alternative approaches.

To shift the perception of professional and productivity 
software, however, requires a radical re-thinking of 

2 Ian Bogost, Play Anything: 
The Pleasure of Limits, The 
Uses of Boredom, & The Se-
cret of Games (New York: 
Basic Books, 2016).

3 Melanie Hoff, Max Fowler, 
Adina Glickstein, and Am-
ber Officer-Narvasa, “Digital 
Love Languages,” accessed 
December 19, 2020, https://
lovelanguages.melaniehoff.
com/

4 Matt Hickman, “Leading 
architecture firms pen open 
letter to Autodesk over ris-
ing costs, sluggish devel-
opment,” The Architect’s 
Newspaper, July 27, 2020, 
accessed December 19, 
2020, https://www.archpa-
per.com/2020/07/leading-ar-
chitecture-firms-pen-open-
letter-to-autodesk/

C
A

R
T

H
A

 I
I 

20
20

 /
 0

4



3

professionalization and industry standardization 
altogether. It may also require developers to imagine 
tools for small groups rather than universal audiences. 
Often it is this general applicability and desire for a 
wide consumer base that pressures software developers 
to keep adding features with every update, to buy out 
other start-up companies, and, quite frankly, to make 
their tools anything but fun.

While it may appear daunting to reverse this mode 
of thinking, video games offer some insights. In 
contrast to productivity software, games are built 
for satisfaction. They shift the location of value from 
product to experience: a game’s value is in its playability. 
Above all, games provide alternative structures for 
communication, labor, and creative thinking centered 
around amusement. Take Nintendo’s Animal Crossing: 
New Horizons, for example. Released just as many of 
us were getting restless at home during quarantine, 
Animal Crossing offered comfort, escapism, and 
delight in what Ian Bogost called the game’s “cute 
pastoralism.”5 Combining quotidian goals with visual 
delight, Animal Crossing became the ideal quarantine 
pastime. Sourdough bakers and Peloton riders found 
in it a means to stay productive. Those who needed an 
escape saw an alternate reality. And for those in need of 
routine, it provided delightful rituals such as harvesting 
fruit or planting flowers. Bogost even went as far as 
to label the game “a political hypothesis about how a 
different kind of world might work.”6 More significantly, 
Animal Crossing offered indefinite playability. Much 
like Electronic Arts’s The Sims, the game does not end. 
It also involves intricate labor and goals, so in a way, it 
is a productivity-oriented virtual platform. Why then 
does the labor enacted within this virtual world appear 
far removed from that which we encounter in Microsoft 
Excel or Autodesk Revit? If building a custom home 
in The Sims requires a similar information dataset as 
a BIM file and methodically harvesting your fruit in 

Animal Crossing is conceptually similar to plugging data 
values into spreadsheets, why must one be so much less 
satisfying than the other?

Video games also provide an alternative economic 
model for software production. Like music and film, 
video game production is now split into major and 
independent developers. The former, referred to as 
AAA game studios includes figures like Nintendo and 
Electronic Arts; the latter encompasses small studios and 
self-publishers. Unburdened by the market obligations 
of the bigger publishers, indie game developers have 
produced some of the most experimental and delightful 
virtual experiences out today, from the visually striking 
aimless wandering of ThatGameCompany’s Flower and 
Adam Robinson-yu’s A Short Hike to the heartwarming 
empathy of Popcannibal’s letter-writing game Kind 
Words (lo fi chill beats to write to) to Julian Glander’s 
quirky simulation of art school life, ART SQOOL. 
Unlike Microsoft, Autodesk, or Adobe, which seek to 
monopolize their respective fields, these games stand 
independently, cater to smaller audiences, and address 
various perceptions of delight. Removing the economic 
burden of a vast user base and all-in-one solutions allows 
software developers to craft bespoke, intimate, and 
diverse experiences. Something like an indie subset of 
design software focused on delight could be a radically 
liberating and compassionate form of care.

Although software that makes us feel good might not 
sound like a radical proposition, it might be exactly what 
we need right now. For a start, let’s imagine software not 
simply as a tool, but as an instrument, something that can 
be tuned and played and enjoyed. Let’s also collectively 
seek out alternative mediums for work where we may 
share experiences and communicate meaningfully 
with each other beyond the supposedly neutral sterility 
of skeuomorphic pages, spreadsheets, CAD layouts, 
talking head grids, and chat dialogues. There must be 

5 Ian Bogost, “The Quiet 
Revolution of Animal Cross-
ing,” The Atlantic, April 15, 
2020, accessed Decem-
ber 19, 2020, https://www.
theatlantic.com/family/ar-
chive/2020/04/animal-cross-
ing-isnt-escapist-its-politi-
cal/610012/

6 Bogost, “Animal Crossing”.

A Short Hike

ART SQOOL

Animal Crossing

C
A

R
T

H
A

 I
I 

20
20

 /
 0

4



4

something between productivity software’s utility and 
video game frivolity. As of now these sites are hazy and 
difficult to find; they might just need to be designed.

Galo Canizares is a designer, writer, and educator. His work blends 
absurdity, genre fiction, world-making, simulation, and parafiction to 
address issues in technology and the built environment. He is the reci-
pient of the 2016-17 Howard E. LeFevre ’29 Emerging Practitioner Fel-
lowship, and in 2018 was awarded the Christos Yessios Visiting Profes-
sorship at The Ohio State University. His writings have been published 
in various journals and he is the author of Digital Fabrications: Designer 
Stories for a Software-Based Planet, a collection of essays on software 
and design published by Applied Research & Design. He co-directs the 
architectural practice office ca.


